Questo blog non intende assolutamente essere un esempio di didattica della matematica per la scuola secondaria di 1°: come dice il titolo si tratta di una sintesi di concetti matematici con esercizi. Chi vuole altro si rivolga altrove.

mercoledì 8 marzo 2017

Numeri relativi: concordi, discordi, opposti

Alcune osservazioni.
1.      Il segno + dei numeri reali positivi può essere sottointeso, quindi 4 è come + 4, 5/3 è come + 5/3, Ö2 è come + Ö2.
2.      Il modulo (o valore assoluto) di un numero reale è il numero che si ottiene togliendo il segno. Per indicare il valore assoluto si usano | |. Quindi: | - 8 | = 8 e si legge “valore assoluto di – 8”.
| + 3/5 | = 3/5
| - Ö3 | = Ö3
| – 7 | = 7
3.      I numeri reali con lo stesso segno ( tutti + o tutti -) si dicono concordi.
+ 4, + 5/7, + Ö5 sono numeri concordi.
- 3, - 7/4, - Ö3 sono numeri concordi.
I numeri reali con diverso segno si dicono discordi. + 4 e – 5/2 sono numeri discordi.
4.      Due numeri discordi con lo stesso valore assoluto si dicono opposti.
-         5 e + 5 sono numeri opposti.

Ricordiamo anche:
·        Confrontando dei numeri concordi positivi è maggiore quello che ha maggior valore assoluto.
+ 4,5 < + 7,6
·        Confrontando dei numeri concordi negativi è maggiore quello che ha minor valore assoluto.
- 6 > - 8
·        Confrontando due numeri discordi è sempre maggiore il numero reale positivo.
+ 8 > - 23

Ecco una serie di esercizi che puoi svolgere on line seguiti da esercizi in forma cartacea.

ESERCIZI

1.      Spiega che cos’è il modulo di un numero relativo e fai un esempio.
2.      Lo zero è minore o maggiore di un numero negativo? E di un numero positivo?
3.      Valuta se le seguenti coppie di numeri sono formate da numeri concordi, discordi oppure opposti:
+ 5; - 3
- 6; - 1/3
- 7; + 7
+ 6; - 1/6
+ 4/3; + Ö2
4.      Considera i seguenti numeri relativi e per ognuno scrivi il numero opposto, indicandone il valore assoluto.
Es.: - 6/7; + 6/7; | +6/7 | = 6/7
+ 5,3;
+ Ö6;
- 1,3;
+11;
5.      Considera un insieme A = {-3; - 2,5; - 2; - 1,5; 0; + 1,5; + 2; + 2,5; + 6} e scrivi per elencazione due sottoinsiemi in modo che:
B = {b/b b>2}
C = {c/c c<-2}
6.      Disponi in ordine crescente questo insieme di numeri:
+6; - 8; - 4; - 10; - 4/2; - 9/2; + 5

venerdì 3 febbraio 2017

Insiemi numerici

Naturalmente conosciamo tutti la necessità di usare i numeri col segno, i numeri relativi. + 4000 potrebbe essere l’altitudine di una montagna, - 4000 invece potrebbe essere la profondità di un mare.
L’insieme dei numeri interi relativi costituisce l’insieme Z, formato da due sottoinsiemi. Infatti sappiamo che i numeri relativi possono essere preceduti dal segno + (si parla in questo caso di numeri interi relativi positivi Z+ che corrispondono all’insieme N perché, ad esempio, +8 = 8) o dal segno – (ed in questo caso abbiamo i numeri interi relativi negativi Z-). Lo “zero” appartiene all’insieme Z+, ma non gli si attribuisce alcun segno.


Abbiamo poi l’insieme Q dei numeri razionali, anche questo formato da numeri razionali positivi Q+ (+4/5) e da numeri razionali negativi Q-.
Poiché, ad esempio, + 4 può essere considerato + 4/1 e – 4 può essere considerato – 4/1, i numeri interi Z costituiscono un sottoinsieme dei numeri razionali.


Troviamo successivamente l’insieme I dei numeri irrazionali, formato dai numeri irrazionali positivi I+ (+ Ö2) e dai numeri irrazionali negativi I- (- Ö2).


L’unione degli insiemi Z+, Q+, I+ ci dà l’insieme R+ dei numeri reali positivi.
Z+ È Q+ È I+ = R+
L’unione degli insiemi Z-, Q-, I- ci dà l’insieme R- dei numeri reali negativi.
Z- È Q- È I- = R-
R+  È R- = insieme dei numeri reali relativi R

Ecco una serie di esercizi che puoi svolgere on line seguiti da esercizi in forma cartacea.


ESERCIZI

1.      Come si indica l’insieme dei numeri interi relativi? Da che cosa è formato?
2.      Come si indica l’insieme dei numeri reali relativi?
3.      Utilizzando il diagramma di Eulero – Venn che rappresenta l’insieme R, inserisci in esso i seguenti numeri relativi:
-         9/2; +  Ö15; + 8; - 4,5; + Ö25; + 7/3; 0,57; - Ö20; - 19; - 16/4; - 4,26

4.      Completa la seguente tabella che contiene i dati delle vendite di alcune marche di auto nel periodo gennaio – maggio degli anni 2010 – 2011. Quali marche hanno avuto un incremento positivo di vendite?



lunedì 23 gennaio 2017

Semirette e segmenti

Che cos’è una semiretta?
Per fartene un’idea immagina una strada che non ha inizio né fine, una strada infinita. Noi ci troviamo su un punto di questa strada e possiamo quindi decidere di percorrerla in un verso o nell’altro: in ognuno dei due casi partiamo dal punto stabilito e possiamo proseguire all’infinito.
Nella realtà concreta però non esiste la semiretta, è un’astrazione geometrica.
Prendiamo una retta r, stabiliamo su questa un punto O.


Il punto O divide la retta in due parti r1 e r2, ciascuna delle quali ha origine dal punto O e continua all’infinito. Queste due parti sono le semirette. Possiamo quindi dire che un punto su una retta individua due semirette, che possiamo così definire: “la semiretta è una parte della retta che ha un punto di origine ed è infinita”.

Consideriamo ora la stessa strada  immaginaria ed infinita di prima. Su questa strada noi però possiamo muoverci solo tra due punti, quindi il nostro percorso ha un inizio ed una fine.
Vediamo la situazione geometrica con una rappresentazione grafica:

Notiamo che, individuando 2 punti sulla retta, questa resta divisa in 3 parti, le semirette r1 e r2 che già conosciamo e la parte di retta compresa tra i punti A e B. Questa parte di retta si chiama segmento e si indica

Per ragioni di tastiera d’ora in avanti indicheremo i segmenti senza il trattino sopra, solo col nome dei punti che lo delimitano: segmento AB. Possiamo quindi definire il segmento: “è una parte di retta delimitata da 2 punti. Ha un inizio ed una fine.”

Due segmenti si dicono consecutivi quando hanno in comune solo un punto.

Due segmenti sono invece adiacenti se, oltre ad essere consecutivi, appartengono alla stessa retta.


Il confronto di segmenti si opera mediante sovrapposizione, facendo coincidere almeno un estremo.
Dal confronto possono risultare queste situazioni:
·        I due segmenti hanno la stessa lunghezza: sono congruenti

Possiamo dire che AB @ CD (il segmento AB è congruente al segmento CD
Il simbolo º significa “coincide”
Se due segmenti non sono congruenti, uno sarà maggiore e l’altro minore

In questo caso AB > CD e quindi CD < AB

Proviamo ora a trovare il segmento somma, disegnando entrambi i segmenti in modo che siano adiacenti.

Il segmento somma è il segmento AD. Infatti AB + CD = AD

Troviamo infine il segmento differenza, sovrapponendo i due segmenti in modo che coincida un estremo.

Il segmento differenza sarà il segmento DB. Infatti AB – CD = DB

Ecco una serie di esercizi che puoi svolgere on line seguiti da esercizi in forma cartacea.


ESERCIZI

1.      Come sono tra loro questi segmenti?
2.      Per quale dei due esempi è vera la frase: AB e CD sono segmenti adiacenti

3.      Prova  a dare una definizione di semiretta
4.      Per due punti quanti segmenti possono passare?
5.      Osserva e confronta

AB …….. BC
AC …….. AB

Quanti segmenti vedi? Colorali di verde.
Quante semirette vedi? Colorale di rosso
6.     

Quale affermazione è vera?
AB > CD
AB @ CD
AB < CD


Commenti (da Net Parade e da Facebook)

ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca