Questo blog non intende assolutamente essere un esempio di didattica della matematica per la scuola secondaria di 1°: come dice il titolo si tratta di una sintesi di concetti matematici con esercizi. Chi vuole altro si rivolga altrove.

Le addizioni algebriche

Poiché con i numeri relativi la sottrazione, in pratica, diventa un’addizione, ecco che possiamo ricondurre una successione di addizioni e sottrazioni fra numeri relativi ad un’unica operazione, chiamata addizione algebrica che ci darà un risultato detto somma algebrica.
L’addizione algebrica può essere resa più semplice sopprimendo le parentesi usate per separare il segno di operazione dal segno del numero e togliendo il segno di operazione.
Nel caso dell’addizione il numero mantiene lo stesso segno.
Es. : (+ 6) + (- 8) diventa 6 – 8 = - 2

Nel caso della sottrazione il secondo numero cambia il segno.
Es. : (+ 6) - (- 8) diventa 6 + 8 = 14

Vediamo un esempio su come si può eseguire un’addizione algebrica
ESERCIZI

·         - 15 – (8 – 3 – 11) + ( - 3 – 8) – (+4 – 13) – 9

·        (+ 2 – 5 – 8) + 12 – (+ 4 + 4 – 9) + (- 2 + 10)











Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

Operazioni con le misure angolari

Per la misura degli angoli consideriamo il sistema sessagesimale, in cui l’unità di misura è l’angolo grado o semplicemente grado di ampiezza pari alla 360a parte dell’angolo giro.
Ogni grado a sua volta si suddivide in 60 primi ed ogni primo in 60 secondi.
Se quindi voglio esprimere la misura dell’angolo a, la cui ampiezza è 47 gradi, 13 primi e 25 secondi, potrò scrivere così:
a = 47° 13’ 25”
Consideriamo che ogni volta che abbiamo 60” dovremo cambiare in un primo; 60’ dovremo cambiarli in un °. Quindi se le misure sono inferiori o uguali a 59 non si dovrà fare nessun cambio, se superiori a 59 occorrerà procedere al cambio. Questa operazione si chiama riduzione in forma normale, che ora vedremo applicata nelle operazioni.
Vediamo come eseguire addizioni con misure angolari
Es. 35° 39’ 37” + 7° 40’ 32”
Disponiamo le varie unità in colonna
Vediamo un altro esempio
10° 24” + 59’ + 20° 57”
Passiamo ora alle sottrazioni con misure angolari.
Es.: 50° 40’ 28” – 26° 45’ 22”
Vediamo un altro esempio
7° 14’ 26” – 4° 30’ 37”
Per eseguire moltiplicazioni di misure angolari con numeri interi, vediamo come procedere
32° 17’ 15” x 7
Vediamo un altro esempio
13° 28’ 30” x 4
Per eseguire divisioni di misure angolari per numeri interi, vediamo come procedere
44° 35’ 24” : 6
Vediamo un altro esempio
95° 12’ 40” : 8

ESERCIZI

• 26° 13’ 27” + 6° 15’ 25”
• 16’ 51” + 29° 15’ + 32’ 40”
• 62° 66’ 84” – 12° 77’ 45”
• 70° 14” – 40° 29’ 25”
• 80° 20’ 42” x 3
• 16° 28’ 36” x 5
• 47° 42’ 20” : 5
• 14° 186’ 84” : 3

Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

Le potenze

Un’altra operazione molto importante in N è l’elevamento a potenza. Di che si tratta? Di un modo più semplice di scrivere numeri molto grandi o molto piccoli.
Consideriamo e risolviamo questo problema:
“Un caseificio ha 4 corridoi destinati alla vendita della mozzarella. In ogni corridoio ci sono 4 scaffali. Ogni scaffale è composto da 4 ripiani. Su ogni ripiano vengono messe 4 confezioni di mozzarella ed ogni confezione contiene 4 mozzarelle. Quante sono in tutto le mozzarelle?”
Potremmo risolvere in questo modo:
4 x 4 = 16 n° scaffali
16 x 4 = 64 n° totale ripiani
64 x 4 = 256 n° totale confezioni di mozzarella
256 x 4 = 1024 n° totale mozzarelle
L’operazione risolutiva è quindi:
4 x 4 x 4 x 4 x 4 = 1024
Notiamo che il fattore 4 è stato moltiplicato per se stesso 5 volte. Potremmo esprimere questa operazione anche così: 45
Abbiamo fatto un elevamento a potenza, cioè un’operazione in cui abbiamo moltiplicato la base per se stessa tante volte quante sono indicate dall’esponente.

45 si legge “quattro alla quinta”
52 = 5 x 5 = 25 e si legge “cinque alla seconda(o al quadrato) uguale 25”
33 = 3 x 3 x 3 = 27 e si legge “tre alla terza (o al cubo) uguale 27”
64 = 6 x 6 x 6 x 6 = 1296 e si legge “sei alla quarta uguale 1296”

Come le quattro operazioni già analizzate, anche le potenze godono di alcune proprietà:
·        Se dobbiamo moltiplicare due o più potenze che hanno la stessa base, il prodotto sarà una potenza che avrà ancora la stessa base e come esponente la somma degli esponenti
34 x 35 = 34+5 = 39
23 x 22 = 23+2 = 25
·        Se dobbiamo moltiplicare due o più potenze che hanno lo stesso esponente, il prodotto sarà una potenza che avrà ancora lo stesso esponente e come base il prodotto delle basi
24 x 34 = (2 x 3)4 = 64
23 x 53 = (2 x 5)3 = 103

·        Se dobbiamo dividere due potenze che hanno la stessa base, il quoziente sarà una potenza che avrà ancora la stessa base e come esponente la differenza degli esponenti
45 : 43 = 45-3= 42
23 : 22 = 23-2 = 21
·        Se dobbiamo dividere due o più potenze che hanno lo stesso esponente, il quoziente sarà una potenza che avrà ancora lo stesso esponente e come base il quoziente delle basi
64 : 34 = (6 : 3)4 = 24
153 : 53 = (15 : 5)3 = 33
·        Se troviamo questo calcolo
(22)3 siamo di fronte alla potenza di una potenza, che si legge “2 alla seconda elevato alla terza”.
(22)3 = 22 x 22 x 22 =
2 x 2 x 2 x 2 x 2 x 2  = 26
Se dobbiamo calcolare la potenza di una potenza, il risultato sarà una potenza che avrà ancora la stessa base e come esponente il prodotto degli esponenti
(34)2 = 34 x 2 = 38
(51)2 = 51 x 2 = 52
·        La potenza di un qualunque numero naturale con esponente 1 è uguale al numero stesso
51 = 5
121 = 12
·        La potenza di un qualunque numero naturale con esponente 0 è sempre uguale ad 1
50 = 1
120 = 1

ESERCIZI

1.      La potenza 34 indica:
·        Il prodotto di 3 fattori tutti uguali a 4
·        Il prodotto di 3 e 4
·        Il prodotto di 4 fattori tutti uguali a 3

2.      In una potenza la base indica:
·        quante volte bisogna moltiplicare l’esponente
·        i fattori (uguali) che bisogna moltiplicare tra di loro
·        il fattore che bisogna moltiplicare per l’esponente

3.      In una potenza l’esponente indica:
·        quante volte bisogna moltiplicare la base per se stessa
·        i fattori (uguali) che bisogna moltiplicare tra di loro
·        il fattore che bisogna moltiplicare per la base

4.      Calcola le seguenti potenze:
·        63 =
·        42 =
·        84 =
·        53 =
·        71 =
·        90 =

5.      Quali uguaglianze sono esatte?
·        43 = 4 x 4 x 4
·        62 = 6 x 6
·        34 = 3 x 4
·        42 = 4 x 4
·        75 = 7 x 7 x 7 x 7 x 7
·        25 = 5 x 5

6.      Scrivi il risultato
·        63 x 66 =
·        85 : 83 =
·        63 x 23  x 33 =
·        (23)4 =
·        454 : 94 =

7.      Esegui i seguenti calcoli
·        (65 x 64) : 63 =
·        (42)4 x (42)3 =
·        (78 : 73) x 74 =
·        (32)5 : (33)3 =
·        [(53 x 83 x 23) x (85 x 25 x 55)] : (403 x 23)2

Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

Risolvere le espressioni aritmetiche

Ricordando che un’espressione aritmetica è un insieme di numeri legati da segni di operazione e con l’eventuale presenza di parentesi, ricordiamo le principali regole da rispettare nella loro esecuzione.
Espressione che non contiene parentesi
Se l’espressione è costituita solo da addizioni e/o sottrazioni si eseguono le operazioni nell’ordine in cui sono indicate.
310 + 45 – 26 – 24 + 57
355 – 26 – 24 + 57
329 – 24 + 57
305 + 57 = 362
Se l’espressione è costituita solo da moltiplicazioni e/o divisioni si eseguono le operazioni nell’ordine in cui sono indicate.
4 x 7 : 2 x 3 : 6 x 4
28 : 2 x 3 : 6 x 4
14 x 3 : 6 x 4
42 : 6 x 4
7 x 4 = 28
Se l’espressione è costituita da addizioni e/o sottrazioni con moltiplicazioni e/o divisioni si eseguono prima le moltiplicazioni e le divisioni nell’ordine in cui sono indicate e poi le addizioni e le sottrazioni sempre nell’ordine in cui sono indicate.
11 + 3 x 521 : 3 + 8 – 5 x 4 : 2
11 + 15 – 7 + 8 – 20 : 2
11 + 15 – 7 + 8 – 10
26 – 7 + 8 – 10
19 + 8 – 10
27 – 10 = 17

Per stabilire l’ordine con cui eseguire i calcoli possono essere presenti tre tipi di parentesi: tonde ( ), quadre [ ], graffe {}.
Quali regole seguire se ci sono le parentesi in un‘espressione?
Espressione con parentesi
1.      Si eseguono per prime le operazioni nelle parentesi tonde, seguendo le regole già indicate ed eliminando le parentesi dopo aver eseguito tutte le operazioni al loro interno.
2.      Allo stesso modo si risolvono le operazioni dentro le parentesi quadre, se presenti.
3.      Si risolvono le operazioni dentro le parentesi graffe, se presenti.
4.      Eliminate tutte le parentesi si eseguono le operazioni restanti rispettando le precedenze già viste.
Esempio
95 : { 13 + 4 x [3 x 18 – 8 x (28 : 4 – 3) : 2] – 70 } + 1
Eseguiamo le operazioni nelle parentesi tonde
95 : { 13 + 4 x [3 x 18 – 8 x (7 – 3) : 2] – 70 } + 1
Ora eseguiamo le operazioni dentro le parentesi quadre
95 : { 13 + 4 x [3 x 188 x 4 : 2] – 70 } + 1
95 : { 13 + 4 x [54 – 32 : 2] – 70 } + 1
95 : { 13 + 4 x [54 – 16] – 70 } + 1
Ora procediamo fino ad eliminare le parentesi graffe
95 : { 13 + 4 x 38 – 70 } + 1
95 : { 13 + 152 – 70 } + 1
95 : {165 - 70} + 1
Eseguiamo le operazioni rimaste
95 : 95 + 1
1 + 1 = 2

ESERCIZI
  1. Senza parentesi
6 + 4 x 7 – 8 + 36 : 9 – 11
  1. Con numeri decimali
5,6 : 1,4 + 3,5 : 0,7 – 1,3 x 4
  1. Con parentesi tonde
70 – (14,6 – 0,6) + (2,7 + 36,3 – 12,5) – 42,5 + 3
  1. Anche con parentesi quadre
[(25 x 2 – 7 x 5) : 3 + (44 – 4 x 10) : 2] x 2 – 32 : 4
  1. Con tutte le parentesi
{(8 + 3) x 3 x 6 : 18 + [17 – 5 + 24 : 2 – (6 x 5 – 120 : 4) : 6] x 3 + 2

Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

La sottrazione con i numeri relativi

Vediamo le sottrazioni con i numeri relativi.
Se dobbiamo fare (+7) – (-5), occorre trovare un terzo numero che sommato al secondo dia come risultato il primo
…….. + (-5) = (+7)
Immaginiamo una retta orientata su cui i numeri positivi sono a destra dello 0 e quelli negativi a sinistra. Partendo da (-5) per arrivare a (+7) dobbiamo spostarci di 12 verso destra.

Il numero che cerchiamo è (+12). Quindi
(+7) – (-5) = +12
Avremmo ottenuto lo stesso risultato operando così:
(+7) + (+5) = + 12
Questo esempio ci fa capire la regola fondamentale: per trovare la differenza di due numeri relativi possiamo addizionare al primo l’opposto del secondo.
Trasformiamo così la sottrazione in un’addizione di cui conosciamo già le regole di esecuzione.
Vediamo alcuni esempi per capire meglio:
·        (+7) – (+4)            trasformo in addizione mettendo l’opposto del secondo numero
(+7) + (-4) = +3
·        (+8) – (-11)
(+8) + (+11) = + 19
·        (-4) – (+9)
(-4) + (-9) = - 13
·        (-8) – (-3)
(-8) + (+3) = -5

Nel caso di sottrazioni con numeri razionali la regola fondamentale resta la stessa. Vediamo un esempio.

ESERCIZI

1) Individua, tra le seguenti, quali sono le sottrazioni errate e poi scrivi il risultato corretto
· (+6) – (+6)
  (+6) + (+6) = +12
· (+11) – (-2)
  (+11) + (+2) = +13
· (-8) – (-3)
  (+8) + (+3) = +11
· (-4) – (-4)
  (-4) + (+4) = 0

2) Esegui
(-3) – (+5)
(+1) – (-1)
(+9) – (+11)
(-20) – (-11)
(-4,6) – (+2,4)









Il peso specifico

Il peso di un corpo dipende essenzialmente da due fattori: il volume occupato e le sostanze da cui è composto quel corpo.
Ad esempio, considerando l’acqua distillata, se si considera un l d’acqua distillata a 4° si vedrà che occupa 1 dm3 e pesa 1 kg.
Quindi nel caso dell’acqua distillata abbiamo questa relazione
Se consideriamo altre unità di misura dei volumi, cambieranno anche la capacità ed il peso.
Ad esempio se invece di 1 dm3  di acqua distillata ne abbiamo 1 m3 (lo spazio occupato quindi è aumentato di 1000 volte), avremo che 1 m3  di acqua distillata avrà una capacità 1000 volte superiore (quindi 1000 litri) ed un peso 1000 volte superiore (quindi 1000 kg, cioè un Megagrammo).
Se invece di 1 dm3  di acqua ne abbiamo 1 cm3 (lo spazio occupato quindi è diminuito di 1000 volte), avremo che 1 cm3  di acqua avrà una capacità 1000 volte inferiore (quindi 1/1000 di litro, cioè un ml) ed un peso 1000 volte inferiore (quindi 1/1000 di kg, cioè un grammo).
Possiamo sintetizzare così le relazioni valide per l’acqua distillata a 4°
Se noi consideriamo un’altra sostanza, ad esempio l’alcool, vediamo che, a parità di capacità o volume, il peso cambia.
Vediamo che, mantenendo sempre il volume di 1 dm3 a cui corrisponde la capacità di 1litro, il peso non è più 1 kg, ma 0,8 kg. Possiamo quindi ricavare gli altri rapporti:
Questo accade perché ogni sostanza ha un proprio peso specifico. Che cos’è il peso specifico? Un po’ semplicisticamente possiamo dire che è il peso di una unità di volume di una certa sostanza.
Ora ti chiederai: “a che cosa serve conoscere il peso specifico di una sostanza?”
Possiamo calcolare il peso di un oggetto senza pesarlo: basta conoscerne il volume
PESO = P.S. x VOLUME
Possiamo calcolare il volume di un oggetto senza misurarlo: basta conoscerne il peso
VOLUME = PESO: P.S.
Attenzione! Il p.s. viene espresso in kg/dm3 ma se il volume è in cm3 il peso sarà in g, se in m3 il peso sarà in Mg.
Detto questo,  un consiglio per le equivalenze è quello di ricordare le relazioni, come puoi vedere dalle tabelle sopra,  e cioè:
Se tu devi fare l’equivalenza:
0,700 dm3 = …………. g
se ricordi che i dm3 corrispondono ai kg è come se l’equivalenza fosse
0,700 kg = ………….. g  ed il risultato è 700
oppure
se ricordi che i g corrispondono ai cm3 è come se l’equivalenza fosse
0,700 dm3 = ………….. cm3  ed il risultato è sempre 700.
Altri esempi:
26 dm3 = …………. g                        diventa 26 Kg = 26 000 g
750 dm3 = …………. Mg                   diventa 750 kg = 0,75 Mg
138 cm3 = …………. Kg                   diventa 138 g = 0,138 kg
3 m3 = …………. Mg                         diventa 3 Mg = 3 Mg
9 cm3 = …………. l                            diventa 9 ml = 0,009 l
58  dm3 = …………. dl                      diventa 58 l = 580 dl
Per quanto riguarda i problemi, ricorda che intervengono 3 grandezze:
P = peso del corpo      V = volume del corpo              ps = peso specifico del corpo  
Dalla lettura del problema devi capire quali conosci e quali devi trovare.

·        1° CASO
Se devi trovare quanto pesa la quantità di una certa sostanza, ricorda che
PESO = P.S.(cioè peso in g, kg, Mg) x VOLUME (in cm3, dm3, m3)
Es: Calcola il peso di un oggetto massiccio d’argento avente il volume di 14 cm3 e il peso specifico di 10,5
P = (10,5 x 14) g = 147 g (scrivi g perché il volume era espresso in cm3)

·        2° CASO
Se devi trovare il volume di una certa sostanza, ricorda che
VOLUME = PESO ( in g, kg, Mg) : P.S. (cioè il peso di un cm3, dm3, m3)
Es: Calcolare il volume di un blocco di marmo avente il peso di 21,6 Kg ed il cui peso specifico è 2,7
V = (21,6 : 2,7) dm3  = 8 dm3 ( scrivi dm3 perché il peso era espresso in kg)

·        3° CASO
Se devi trovare il peso specifico di una certa sostanza, ricorda che
P.s = PESO ( in g, kg, Mg) : VOLUME (in cm3, dm3, m3)
Es: Calcolare il peso specifico di un blocco massiccio di ghisa del peso di 150 kg, sapendo che il suo volume è 20 dm3
(150 : 20) dm3 = 7,5 kg/ dm3
ESERCIZI
  1. Il peso specifico del gesso è 1,4 perché ……………………………………………………
  2. Per trovare il peso di un corpo devo ………………… il suo p.s. per …………………….
  3. Per trovare il p.s. di un corpo devo ………………… il suo peso per …………………….
  4. Per trovare il volume di un corpo devo ………………… il suo peso per …………………
  5. Completa, sapendo che le misure si riferiscono ad acqua distillata a 4°
    • 76 cm3 corrispondono a ………………. ml e pesano ………….. g
    • 10 m3 corrispondono a ………………. l e pesano ………….. Mg
    • 312 dm3 corrispondono a ………………. l e pesano ………….. hg
    • 0,273 m3 corrispondono a ………………. hl e pesano ………….. Kg
  6. Qual è il peso in kg di un oggetto d’avorio (p.s 1,86) che ha il volume di 24 cm3?
  7. Una sfera d’acciaio con il volume di 5,9 dm3 pesa 45,725 kg. Qual è il p.s. dell’acciaio?
  8. Un contenitore pieno di benzina (p.s. 0,75) pesa 10,725Kg, vuoto pesa 2 kg. Qual è la capacità del contenitore?

Le divisioni in N

Dividendo due numeri appartenenti ad N, il quoziente è un numero appartenente ad N solo se il dividendo è multiplo del divisore, negli altri casi non troviamo in N il quoziente. Possiamo dunque dire che la divisione non è un’operazione interna all’insieme N oppure che l’insieme N è aperto rispetto alla divisione.
La divisione gode della proprietà:
·        Invariantiva: in una divisione il quoziente tra due numeri non cambia se dividiamo o moltiplichiamo sia il dividendo che il divisore per uno stesso numero, diverso da zero.
Es.: 252 : 9 = 28
(252 : 3) : (9 : 3) =
84 : 3 = 28
(84 x 5) : (3 x 5) = 420 : 15 = 28

·        Distributiva: dividendo una somma o una differenza per un numero, si può dividere ciascun numero della somma o della differenza per quel numero e poi aggiungere o sottrarre i quozienti così ottenuti.
Es.: (32 + 12) : 4 = 44 : 4 = 11 ma anche
(32 : 4) + (12 : 4) = 8 + 3 = 11

(30 – 20) : 5 = 10 : 5 = 2 ma anche
(30: 5) – (20 : 5) = 6 – 4 = 2

Per eseguire una divisione in colonna con numeri decimali, possiamo distinguere questi due casi:
  1. solo il dividendo è decimale ( si esegue la divisione normalmente e si mette la virgola nel quoziente quando si considera la prima cifra decimale del dividendo)
Es.: 415, 52 : 53

  1. il divisore è decimale (occorre applicare la proprietà invariantiva della divisione per rendere intero il divisore e poi si procede normalmente)
Es.: 273 : 6,5 (si applica la proprietà invariantiva moltiplicando per 10 il divisore ed il dividendo e l’operazione diventa 2 730 : 65)
Es.: 43, 725 : 8,25 (si applica la proprietà invariantiva moltiplicando per 100 il divisore ed il dividendo e l’operazione diventa 4372,5 : 825)

ESERCIZI

  1. Scrivi se V (vero) o F (falso)
    • La divisione è un’operazione interna all’insieme N
    • L’insieme N è aperto rispetto alla divisione
    • L’insieme N non è chiuso rispetto alla divisione
    • Considerati due numeri naturali esiste sempre un terzo numero naturale che è il loro quoziente

  2. Di quali proprietà gode la divisione?
  3. Quale proprietà è stata applicata nelle seguenti uguaglianze?
·        36 : 4 = (36 : 2) : (4 : 2)
·        15 : 5 = (15 x 4) : (5 x 4)
·        (24 + 40) : 8 = (24 : 8) + (40 : 8)
·        120 : 6 = (120: 3) : (6: 3)
·        (39 – 18) : 3 = (39: 3) – (18 : 3)

  1. Esegui applicando la proprietà invariantiva come nell’esempio
Es.: 72 : 6
(72 : 3) : (6 : 3) = 24 : 2 = 12
(72 x 3) : (6 x 3) = 216 : 18 = 12

27 : 9
48 : 8
42 : 6

  1. Esegui applicando la proprietà distributiva
(24 + 10) : 2
(27 – 12) : 3
(49 – 21 + 14) : 7

  1. Esegui in colonna e scrivi il risultato
45,44 : 8
96,48 : 24
3 444 : 0,6
15,689 : 2,9
9234 : 1,8

La moltiplicazione in N

Se moltiplichiamo due numeri appartenenti ad N, il prodotto sarà un altro numero ancora appartenente a N. Diciamo quindi che la moltiplicazione è un’operazione interna all’insieme N oppure che l’insieme N è chiuso rispetto alla moltiplicazione.
La moltiplicazione può essere considerata come un’addizione ripetuta e quindi gode delle stesse proprietà di cui gode l’addizione.
La moltiplicazione gode quindi della proprietà:
·        commutativa: il prodotto di due o più fattori non cambia cambiando l’ordine dei fattori.
Es.: 6 x 8 x 5 = 8 x 5 x 6
Possiamo anche dire:
" a,b є N (leggiamo “Per qualunque numero a e b appartenente ad N”)
a x b = b x a
·        associativa: il prodotto di 3 o più fattori non cambia se al posto di 2 o più fattori inseriamo il loro prodotto.
Es.: 4 x 10 x 7 = 40 x 7
Possiamo anche dire:
" a,b, c є N (leggiamo “Per qualunque numero a, b, c appartenente ad N”)
a x b x c = a x (b x c) = (a x b) x c
·        dissociativa: il prodotto di 2 o più fattori non cambia se si sostituisce un fattore con altri il cui prodotto sia uguale al fattore sostituito.
Es.: 15 x 12 = 3 x 5 x 2 x 6
Possiamo anche dire:
" a,b, c, d є N (leggiamo “Per qualunque numero a, b, c, d appartenente ad N”)
a x b = a x (c x d)      con c x d = b
Inoltre la moltiplicazione gode anche della proprietà:
·        distributiva: moltiplicando un numero per una somma o una differenza, possiamo moltiplicare il numero per ciascun numero della somma o della differenza e poi aggiungere o sottrarre i prodotti ottenuti.
Es.:      13 x  18 = 13 x (10 + 8) = (13 x 10) + (13 x 8) = 130 + 104 = 234
14 x 15 =  14 x (20 – 5) = (14 x 20) – (14 x 5) = 280 – 70 = 210

Per eseguire una moltiplicazione in colonna considera inizialmente i fattori come interi anche se hanno cifre decimali. Moltiplica ogni cifra del moltiplicatore per il moltiplicando, ottenendo così dei prodotti parziali che ogni volta scriverai spostandoti a sinistra di una posizione.
Al termine somma i prodotti parziali e separa, a partire da destra, tante cifre decimali quante sono quelle dei due fattori considerati insieme.
Es.: 8, 21 x 5,4



ESERCIZI

1) 1) Se consideriamo due numeri naturali esiste sempre un terzo numero naturale che sia il loro prodotto?
2.  2) L’insieme N è aperto o chiuso rispetto alla moltiplicazione?
3.  3) Enuncia la proprietà dissociativa della moltiplicazione ed illustrala con un esempio.
4.  4) Quale enunciato spiega in modo corretto la proprietà associativa della moltiplicazione?
·         Il prodotto di tre o più fattori non cambia se si sostituisce un fattore con altri il cui prodotto sia uguale al fattore sostituito.
·         Il prodotto di due o più fattori non cambia cambiando l’ordine dei fattori.
·         Il prodotto di tre o più fattori non cambia sostituendo due o più di essi con un fattore uguale al loro prodotto.
5.  5) Quali proprietà trovi applicate nelle seguenti uguaglianze?
6 x 3 x 4 x 8 = 18 x 32
20 x 15 = 5 x 4 x 3 x 5
5 x 9 x 6 = 5 x 6 x 9
7 x (8 – 2) = (7 x 8) – (7 x 2)
6.  6) Esegui questa moltiplicazione applicando la proprietà commutativa:
   2 x 16 x 5 =
7.  7) Esegui questa moltiplicazione applicando la proprietà associativa come vedi nell’esempio:
4 x 6 x 3 =

8 x 6 x 5 =
8.  8) Esegui questa moltiplicazione applicando la proprietà distributiva come vedi nell’esempio:
6 x 18 = 6 x (10 + 8) = (6 x 10) + (6 x 8) = 60 + 48 = 108
8 x 23 =
9) Metti in colonna e scrivi il risultato
172 x 5,2 =
6, 34 x 73 =
112, 3 x 7, 25 =

Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca