sabato 17 dicembre 2011

Le addizioni algebriche

Poiché con i numeri relativi la sottrazione, in pratica, diventa un’addizione, ecco che possiamo ricondurre una successione di addizioni e sottrazioni fra numeri relativi ad un’unica operazione, chiamata addizione algebrica che ci darà un risultato detto somma algebrica.
L’addizione algebrica può essere resa più semplice sopprimendo le parentesi usate per separare il segno di operazione dal segno del numero e togliendo il segno di operazione.
Nel caso dell’addizione il numero mantiene lo stesso segno.
Es. : (+ 6) + (- 8) diventa 6 – 8 = - 2

Nel caso della sottrazione il secondo numero cambia il segno.
Es. : (+ 6) - (- 8) diventa 6 + 8 = 14

Vediamo un esempio su come si può eseguire un’addizione algebrica
ESERCIZI

·         - 15 – (8 – 3 – 11) + ( - 3 – 8) – (+4 – 13) – 9

·        (+ 2 – 5 – 8) + 12 – (+ 4 + 4 – 9) + (- 2 + 10)











Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

martedì 13 dicembre 2011

Operazioni con le misure angolari

Per la misura degli angoli consideriamo il sistema sessagesimale, in cui l’unità di misura è l’angolo grado o semplicemente grado di ampiezza pari alla 360a parte dell’angolo giro.
Ogni grado a sua volta si suddivide in 60 primi ed ogni primo in 60 secondi.
Se quindi voglio esprimere la misura dell’angolo a, la cui ampiezza è 47 gradi, 13 primi e 25 secondi, potrò scrivere così:
a = 47° 13’ 25”
Consideriamo che ogni volta che abbiamo 60” dovremo cambiare in un primo; 60’ dovremo cambiarli in un °. Quindi se le misure sono inferiori o uguali a 59 non si dovrà fare nessun cambio, se superiori a 59 occorrerà procedere al cambio. Questa operazione si chiama riduzione in forma normale, che ora vedremo applicata nelle operazioni.
Vediamo come eseguire addizioni con misure angolari
Es. 35° 39’ 37” + 7° 40’ 32”
Disponiamo le varie unità in colonna
Vediamo un altro esempio
10° 24” + 59’ + 20° 57”
Passiamo ora alle sottrazioni con misure angolari.
Es.: 50° 40’ 28” – 26° 45’ 22”
Vediamo un altro esempio
7° 14’ 26” – 4° 30’ 37”
Per eseguire moltiplicazioni di misure angolari con numeri interi, vediamo come procedere
32° 17’ 15” x 7
Vediamo un altro esempio
13° 28’ 30” x 4
Per eseguire divisioni di misure angolari per numeri interi, vediamo come procedere
44° 35’ 24” : 6
Vediamo un altro esempio
95° 12’ 40” : 8

ESERCIZI

• 26° 13’ 27” + 6° 15’ 25”
• 16’ 51” + 29° 15’ + 32’ 40”
• 62° 66’ 84” – 12° 77’ 45”
• 70° 14” – 40° 29’ 25”
• 80° 20’ 42” x 3
• 16° 28’ 36” x 5
• 47° 42’ 20” : 5
• 14° 186’ 84” : 3

Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

sabato 3 dicembre 2011

Le potenze

Un’altra operazione molto importante in N è l’elevamento a potenza. Di che si tratta? Di un modo più semplice di scrivere numeri molto grandi o molto piccoli.
Consideriamo e risolviamo questo problema:
“Un caseificio ha 4 corridoi destinati alla vendita della mozzarella. In ogni corridoio ci sono 4 scaffali. Ogni scaffale è composto da 4 ripiani. Su ogni ripiano vengono messe 4 confezioni di mozzarella ed ogni confezione contiene 4 mozzarelle. Quante sono in tutto le mozzarelle?”
Potremmo risolvere in questo modo:
4 x 4 = 16 n° scaffali
16 x 4 = 64 n° totale ripiani
64 x 4 = 256 n° totale confezioni di mozzarella
256 x 4 = 1024 n° totale mozzarelle
L’operazione risolutiva è quindi:
4 x 4 x 4 x 4 x 4 = 1024
Notiamo che il fattore 4 è stato moltiplicato per se stesso 5 volte. Potremmo esprimere questa operazione anche così: 45
Abbiamo fatto un elevamento a potenza, cioè un’operazione in cui abbiamo moltiplicato la base per se stessa tante volte quante sono indicate dall’esponente.

45 si legge “quattro alla quinta”
52 = 5 x 5 = 25 e si legge “cinque alla seconda(o al quadrato) uguale 25”
33 = 3 x 3 x 3 = 27 e si legge “tre alla terza (o al cubo) uguale 27”
64 = 6 x 6 x 6 x 6 = 1296 e si legge “sei alla quarta uguale 1296”

Come le quattro operazioni già analizzate, anche le potenze godono di alcune proprietà:
·        Se dobbiamo moltiplicare due o più potenze che hanno la stessa base, il prodotto sarà una potenza che avrà ancora la stessa base e come esponente la somma degli esponenti
34 x 35 = 34+5 = 39
23 x 22 = 23+2 = 25
·        Se dobbiamo moltiplicare due o più potenze che hanno lo stesso esponente, il prodotto sarà una potenza che avrà ancora lo stesso esponente e come base il prodotto delle basi
24 x 34 = (2 x 3)4 = 64
23 x 53 = (2 x 5)3 = 103

·        Se dobbiamo dividere due potenze che hanno la stessa base, il quoziente sarà una potenza che avrà ancora la stessa base e come esponente la differenza degli esponenti
45 : 43 = 45-3= 42
23 : 22 = 23-2 = 21
·        Se dobbiamo dividere due o più potenze che hanno lo stesso esponente, il quoziente sarà una potenza che avrà ancora lo stesso esponente e come base il quoziente delle basi
64 : 34 = (6 : 3)4 = 24
153 : 53 = (15 : 5)3 = 33
·        Se troviamo questo calcolo
(22)3 siamo di fronte alla potenza di una potenza, che si legge “2 alla seconda elevato alla terza”.
(22)3 = 22 x 22 x 22 =
2 x 2 x 2 x 2 x 2 x 2  = 26
Se dobbiamo calcolare la potenza di una potenza, il risultato sarà una potenza che avrà ancora la stessa base e come esponente il prodotto degli esponenti
(34)2 = 34 x 2 = 38
(51)2 = 51 x 2 = 52
·        La potenza di un qualunque numero naturale con esponente 1 è uguale al numero stesso
51 = 5
121 = 12
·        La potenza di un qualunque numero naturale con esponente 0 è sempre uguale ad 1
50 = 1
120 = 1

ESERCIZI

1.      La potenza 34 indica:
·        Il prodotto di 3 fattori tutti uguali a 4
·        Il prodotto di 3 e 4
·        Il prodotto di 4 fattori tutti uguali a 3

2.      In una potenza la base indica:
·        quante volte bisogna moltiplicare l’esponente
·        i fattori (uguali) che bisogna moltiplicare tra di loro
·        il fattore che bisogna moltiplicare per l’esponente

3.      In una potenza l’esponente indica:
·        quante volte bisogna moltiplicare la base per se stessa
·        i fattori (uguali) che bisogna moltiplicare tra di loro
·        il fattore che bisogna moltiplicare per la base

4.      Calcola le seguenti potenze:
·        63 =
·        42 =
·        84 =
·        53 =
·        71 =
·        90 =

5.      Quali uguaglianze sono esatte?
·        43 = 4 x 4 x 4
·        62 = 6 x 6
·        34 = 3 x 4
·        42 = 4 x 4
·        75 = 7 x 7 x 7 x 7 x 7
·        25 = 5 x 5

6.      Scrivi il risultato
·        63 x 66 =
·        85 : 83 =
·        63 x 23  x 33 =
·        (23)4 =
·        454 : 94 =

7.      Esegui i seguenti calcoli
·        (65 x 64) : 63 =
·        (42)4 x (42)3 =
·        (78 : 73) x 74 =
·        (32)5 : (33)3 =
·        [(53 x 83 x 23) x (85 x 25 x 55)] : (403 x 23)2

Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

Commenti (da Net Parade e da Facebook)

ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca