Questo blog non intende assolutamente essere un esempio di didattica della matematica per la scuola secondaria di 1°: come dice il titolo si tratta di una sintesi di concetti matematici con esercizi. Chi vuole altro si rivolga altrove.

Metodi per calcolare il M.C.D.

Che cos’è il Massimo Comune Divisore?
Il Massimo Comune Divisore fra due o più numeri è il maggiore tra i divisori comuni ai numeri dati. Il Massimo Comune Divisore si abbrevia con M.C.D.
Es: qual è il M.C.D.  tra 24 e 16?
Cerchiamo tutti i divisori di 24
D (24) = {1, 2, 3, 4, 6, 8, 12, 24}
Cerchiamo tutti i divisori di 16
D (16) = {1, 2, 4,  8, 16}
I due numeri 24 e 16 hanno dei divisori comuni: 1, 2, 4, 8. Il maggiore di questi divisori è 8, quindi il M.C.D. (24, 16) = 8

Esistono sistemi diversi per calcolare il M.C.D. fra due o più numeri. Noi qui ne presentiamo due.
·          Cominciamo ad esaminare il cosiddetto metodo insiemistico.
Vogliamo trovare il M.C.D. fra 65, 140 e 90.
Elenchiamo tutti i divisori di 65.
D (65) = {1, 5, 13, 65}
Elenchiamo tutti i divisori di 140.
D (140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}
Elenchiamo tutti i divisori di 90.
D (90) = {1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90}
Calcoliamo l’insieme dei divisori comuni, cioè l’intersezione tra gli elementi dei tre insiemi precedenti.
D (65) ÇD (140) ÇD (90) = {1, 5,}
M.C.D. (65, 140, 90) = 5

Vediamo un altro esempio
Vogliamo trovare il M.C.D. fra 140, 105 e 35.
Elenchiamo tutti i divisori di 140.
D (140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}
Elenchiamo tutti i divisori di 105.
D (105) = {1, 3, 5, 7, 15, 21, 35, 105}
Elenchiamo tutti i divisori di 35.
D (35) = {1, 5, 7, 35}
Calcoliamo l’insieme dei divisori comuni, cioè l’intersezione tra gli elementi dei tre insiemi precedenti.
D (140) ÇD (105) ÇD (35) = {1, 5, 7, 35}
M.C.D. (140, 105, 35) = 35

Possiamo quindi dire che con il metodo insiemistico, per calcolare il M.C.D. tra due o più numeri, si elencano gli insiemi dei divisori dei numeri dati, si calcola l’insieme intersezione e il M.C.D. sarà l’elemento maggiore dell’insieme intersezione.

·          Esaminiamo ora il cosiddetto metodo della scomposizione in fattori primi, raccomandabile soprattutto se i numeri sono grandi.
Vogliamo trovare il M.C.D. fra 288, 360 e 186.
Scomponiamo in fattori primi i tre numeri
288
2
144
2
72
2
36
2
18
2
9
3
3
3
1


288 = 25 x 32

360
2
180
2
90
2
45
3
15
3
5
5




360 = 23 x 32 x 5

186
2
93
3
31
31
1



186 = 2 x 3 x 31

Vediamo ora se ci sono fattori primi comuni ai tre numeri e consideriamoli col minore esponente.
288 = 25 x 32
360 = 23 x 32 x 5
186 = 2 x 3 x 31
I fattori comuni, presi con il minore esponente, sono 2 e 3, quindi
M.C.D. (288, 360, 186) = 2 x 3 = 6

Vediamo un altro esempio
Vogliamo trovare il M.C.D. fra 528, 624, 768.
Scomponiamo in fattori primi i tre numeri
528
2
264
2
132
2
66
2
33
3
11
11
1


528 = 24 x 3 x 11

624
2
312
2
156
2
78
2
39
3
13
13
1



624 = 24 x 3 x 13

768
2
384
2
192
2
96
2
48
2
24
2
12
2
6
2
3
3
1



768 = 28 x 3

Vediamo ora se ci sono fattori primi comuni ai tre numeri e consideriamoli col minore esponente.
528 = 24 x 3 x 11
624 = 24 x 3 x 13
768 = 28 x 3
I fattori comuni, presi con il minore esponente, sono 24 e 3, quindi
M.C.D. (288, 360, 186) = 24 x 3 = 16 x 3 = 48

Possiamo quindi dire che con il metodo della scomposizione in fattori primi, per calcolare il M.C.D. tra due o più numeri,  si scompongono i numeri dati in fattori primi  e il M.C.D. sarà il prodotto dei fattori comuni considerati con il minore esponente.

Vediamo un altro esempio
Vogliamo trovare il M.C.D. fra 9, 12, 14.
Scomponiamo in fattori primi i tre numeri
9
3
3
3
1


9 = 32

12
2
6
2
3
3
1



12 = 22 x 3

14
2
7
7
1



14 = 2 x 7

Vediamo ora se ci sono fattori primi comuni ai tre numeri e consideriamoli col minore esponente.
9 = 32
12 = 22 x 3
14 = 2 x 7
I tre numeri non hanno altri divisori comuni, oltre ad 1, quindi il M.C.D. è 1 e questi numeri si dicono primi tra loro.

ESERCIZI
·     Che cos’è il M.C.D. fra due o più numeri?
·     Quando due o più numeri si dicono primi tra loro?
·     Calcola il M.C.D. dei seguenti gruppi di numeri, usando il metodo insiemistico:
a) 70, 42, 98;                                     b) 56, 42, 24;
c) 32, 30;                                             d) 18, 20, 30

                       
                                   
·     Calcola il M.C.D. dei seguenti gruppi di numeri usando il metodo della scomposizione in fattori primi:
a) 60, 75;                                b) 252, 270;
c) 3 150, 3 675;                      d) 72, 128, 216;
e) 324, 729, 486;                    f) 190, 380, 684;
g) 180, 300, 528, 672;            h) 128, 220, 286, 308;           

Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca