Questo blog non intende assolutamente essere un esempio di didattica della matematica per la scuola secondaria di 1°: come dice il titolo si tratta di una sintesi di concetti matematici con esercizi. Chi vuole altro si rivolga altrove.

Le frazioni


Sappiamo già che frazionare significa suddividere in parti uguali un intero che può essere costituito da una quantità continua o discontinua. 
Consideriamo un rettangolo intero e dividiamolo in 6 parti uguali.
Ognuna delle parti costituisce “un sesto” del rettangolo che indichiamo1/6
Vediamo ora un cerchio intero suddiviso in 4 parti uguali.
Ogni parte rappresenta “un quarto” e si indica 1/4
Poiché queste frazioni rappresentano una ed una sola delle parti in cui abbiamo diviso la grandezza intera, diremo che 1/6 e 1/4 sono unità frazionarie.
 Le unità frazionarie indicano quindi una sola delle parti in cui è diviso un intero.

Guardiamo ora questa figura
Vediamo che abbiamo considerato 4 volte l’unità frazionaria 1/6
1/6 + 1/6 + 1/6 + 1/6 = 4/6

Se invece osserviamo quest’altra figura
vediamo che abbiamo considerato 3 volte l’unità frazionaria ¼
¼ + ¼ + ¼  = ¾

4/6, ¾ sono frazioni
La frazione è quindi un operatore che divide un intero in parti uguali e ne considera alcune di esse.

Possiamo classificare le frazioni in: proprie, improprie, apparenti.
Guardiamo questo esempio
La frazione 3/5 rappresenta la parte colorata del rettangolo. Si tratta di una parte minore dell’intero.


La frazione 5/8 rappresenta la parte colorata dell’intero. Si tratta di una parte minore dell’intero.
3/5 e 5/8 sono frazioni proprie.
Una frazione è propria quando, operando con essa su una grandezza, otteniamo una grandezza minore di quella di partenza. Riconosciamo le frazioni proprie perché il numeratore è minore del denominatore.

Osserviamo ora questi esempi
La frazione 7/5 rappresenta la parte colorata. Si tratta di una parte maggiore del rettangolo intero.
La frazione 5/4 rappresenta la parte colorata. Si tratta di una parte maggiore del cerchio intero.
7/5 e 5/4 sono frazioni improprie.
Una frazione è impropria quando, operando con essa su una grandezza, otteniamo una grandezza maggiore di quella di partenza. Riconosciamo le frazioni improprie perché il numeratore è maggiore (ma non multiplo) del denominatore.

Consideriamo ora quest’altro esempio
La frazione 5/5 rappresenta la parte colorata e corrisponde all’intero.
La frazione 12/4 rappresenta la parte colorata e corrisponde a 3 interi.
5/5 e 12/4 sono frazioni apparenti.
Una frazione è apparente quando, operando con essa su una grandezza, otteniamo una grandezza congruente o multipla di quella di partenza. Riconosciamo le frazioni apparenti perché il numeratore è uguale o multiplo del denominatore.


Abbiamo operato su una grandezza intera ed abbiamo ottenuto la frazione che rappresenta la parte colorata: 4/9
Abbiamo operato sulla stessa grandezza ed abbiamo ottenuto un’altra frazione che rappresenta la parte colorata: 5/9

Se consideriamo la somma delle due grandezze ottenute otteniamo una grandezza che è congruente alla grandezza di partenza. Infatti: 4/9 + 5/9 = 9/9
4/9 e 5/9 sono frazioni complementari.
Due frazioni sono complementari quando, operando con esse su una grandezza, otteniamo due grandezze la cui somma è congruente alla grandezza di partenza.

ESERCIZI

·     Completa la seguente tabella
Frazioni
Numeratore
Denominatore
Unità frazionaria
N° delle unità frazionarie considerate
4/5





5
7


6/13




3/7





4
9


·     Quale unità frazionaria rappresenta la parte colorata di ogni figura?

·     Quale frazione rappresenta la parte colorata di ogni figura?

·     Quando possiamo dire che due frazioni sono complementari?
·     Fra le seguenti coppie di frazioni cerchia quelle complementari
3/8 e 5/8;  5/10 e 4/10; 3/11 e 8/11; 2/9 e 5/9; 8/10 e 6/10; 3/7 e 4/7; 1/10 e 9/10; 13/20 e 7 /20
·     Quando possiamo dire che una frazione è propria?
·     Quando possiamo dire che una frazione è impropria?
·     Quando possiamo dire che una frazione è apparente?
·     Considera l’insieme:





e scrivi per elencazione i seguenti sottoinsiemi:
B = {x/x Î A ed è frazione propria}
C = {x/x Î A ed è frazione impropria}
D = {x/x Î A ed è frazione apparente}


Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca