Questo blog non intende assolutamente essere un esempio di didattica della matematica per la scuola secondaria di 1°: come dice il titolo si tratta di una sintesi di concetti matematici con esercizi. Chi vuole altro si rivolga altrove.

Applicazioni del teorema di Pitagora



Il teorema di Pitagora si applica solo ai triangoli rettangoli, ma la sua conoscenza può essere utile in tutti quei casi in cui in una figura piana è possibile ricavare un triangolo rettangolo.
Vediamo qualche esempio.
Triangolo equilatero

Tracciando l’altezza di un triangolo equilatero otteniamo due triangoli rettangoli. Consideriamone uno.

Abbiamo:
AB = ipotenusa (il lato del triangolo equilatero corrisponde all’ipotenusa)
BH = cateto (l’altezza del triangolo equilatero corrisponde ad un cateto)
AH = cateto (metà del lato del triangolo equilatero corrisponde all’altro cateto)

Proviamo a risolvere:
Un triangolo rettangolo ha il perimetro di 78 cm. Calcola la sua area.
(78 : 3) cm = 26 cm  misura dei lati AB, BC, AC
(26 : 2) cm = 13 cm misura di AH




(26 x 22,51) : 2 cm2 = 292,63 cm2 area del triangolo ABC

Triangolo isoscele
Tracciando l’altezza di un triangolo isoscele otteniamo due triangoli rettangoli. Consideriamone uno.
Abbiamo:
AB = ipotenusa (il lato del triangolo isoscele corrisponde all’ipotenusa)
BH = cateto (l’altezza del triangolo isoscele corrisponde ad un cateto)
AH = cateto (metà della base del triangolo isoscele corrisponde all’altro cateto)

Proviamo a risolvere:
Un triangolo isoscele con l’area di 480 cm2, ha l’altezza lunga 30 cm. Calcola il perimetro del triangolo.
(480 x 2) : 30 cm = 32 cm misura della base AC
(32 : 2) cm = 16 cm misura di AH




(34 x 2) + 32 = 100 cm perimetro del triangolo ABC

Quadrato
Tracciando una diagonale del quadrato otteniamo due triangoli rettangoli isosceli , cioè con i cateti della stessa misura. Consideriamone uno.
Abbiamo:
BD = ipotenusa (la diagonale corrisponde all’ipotenusa)
AD = AB = cateti (i lati del quadrato corrispondono ai cateti)

Proviamo a risolvere:
Un quadrato ha la superficie che misura 1747,24 m2. Calcola la misura della diagonale.
 





Rettangolo
Tracciando una diagonale del rettangolo otteniamo due triangoli rettangoli. Consideriamone uno, il triangolo ABD.
Abbiamo:
AB = cateto (l’altezza del rettangolo corrisponde ad un cateto)
AD = cateto (la base del rettangolo corrisponde all’altro cateto)
BD = ipotenusa (la diagonale del rettangolo corrisponde all’ipotenusa)

Proviamo a risolvere:
Un rettangolo ha il perimetro di 252 cm e l’altezza è i 3/11 della base. Calcola l’area e la misura della diagonale.
(252 : 2) cm = 126 cm semiperimetro
3/11 + 11/11 = 14/11 = 126 cm
(126: 14) cm = 9 cm valore di 1/11
(9 x 3) cm = 27 cm misura dell’altezza AB
(9 x 11) cm = 99 cm misura della base AD
(99 x 27) cm2 = 2 673 cm2 area del rettangolo




Romboide
Tracciando le altezze del romboide otteniamo due triangoli rettangoli. Consideriamone uno, il triangolo ABH.
Abbiamo:
BH = cateto (l’altezza del romboide corrisponde ad un cateto)
AH = cateto
AB = ipotenusa (il lato obliquo del romboide corrisponde all’ipotenusa)

Proviamo a risolvere:
Un romboide con la base di 54 cm ha l’area di 1296 cm2. L’altezza divide la base in due parti una doppia dell’altra. Calcola il perimetro del romboide.

(1296 : 54) cm = 24 cm misura di BH
(54 : 3) cm = 18 cm misura di AH




(54 x 2) + (30 x 2) cm = 168 cm perimetro

Rombo
Tracciando le due diagonali del rombo otteniamo quattro triangoli rettangoli. Consideriamone uno, il triangolo ABE.
Abbiamo:
BE = cateto (metà della diagonale maggiore corrisponde ad un cateto)
AE = cateto (metà della diagonale minore corrisponde all’altro cateto)
AB = ipotenusa (il lato del rombo corrisponde all’ipotenusa)

Proviamo a risolvere:
In un rombo la somma della lunghezza delle due diagonali misura 392 cm, una diagonale è i ¾ dell’altra. Calcolare perimetro, area ed altezza del rombo.
¾ + 4/4 = 7/4 = 392 cm
(392 : 7) cm = 56 cm valore di ¼
(56 x 3) cm = 168 cm misura della diagonale minore AC
(56 x 4) cm = 224 cm misura della diagonale maggiore BD
(168 : 2) cm = 84 cm misura di AE
(224 : 2) cm = 112 cm misura di BE




(140 x 4) cm = 560 cm misura del perimetro
(224 x 168) : 2 cm2 = 18816 cm2 area del rombo
(18816 : 140) cm = 134,4 cm misura di CF, altezza del rombo

Trapezio rettangolo
Tracciando l’altezza di un trapezio rettangolo otteniamo un triangolo rettangolo. Consideriamo il triangolo rettangolo CHD.
Abbiamo:
CH = cateto (l’altezza del trapezio corrisponde ad un cateto)
HD = cateto (la differenza tra base maggiore e base minore corrisponde all’altro cateto)
CD = ipotenusa (il lato obliquo del trapezio corrisponde all’ipotenusa)

Proviamo a risolvere:
Di un trapezio rettangolo conosciamo la misura della base minore, 60 cm e la misura della diagonale minore, 68 cm . Sappiamo anche che il lato obliquo è i 2/3 della base minore. Calcoliamo il perimetro di un rettangolo equivalente al trapezio e con la base di 64 cm.
 (60 : 3) x 2 cm = 40 cm misura di CD






(60 + 24) cm = 84 cm misura di AD
(84 + 60) x 32 : 2 cm2 = 2304 cm2 misura dell’area del trapezio e del rettangolo
(2304 : 64) cm = 36 cm misura dell’altezza EF del rettangolo
(64 x 2) + (36 x 2) cm = 200 cm perimetro del rettangolo

Trapezio isoscele
Tracciando le altezze di un trapezio isoscele otteniamo due triangoli rettangoli. Consideriamone uno, il triangolo rettangolo ABH.
Abbiamo:
BH = cateto (l’altezza del trapezio corrisponde ad un cateto)
AH = cateto (la metà della differenza tra base maggiore e base minore corrisponde all’altro cateto)
AB = ipotenusa (il lato obliquo del trapezio corrisponde all’ipotenusa)

Proviamo a risolvere:
In un trapezio isoscele la base maggiore, l’altezza ed una diagonale misurano rispettivamente 280 cm, 150 cm e 250 cm. Calcola il perimetro e l’area del trapezio.

Consideriamo il triangolo rettangolo ACK.




Troviamo la lunghezza del segmento KD = AH
(280 – 200) cm = 80 cm misura di KD e AH
Troviamo la lunghezza della base minore
280 – (80 x 2) cm = 120 cm misura di BC
Ora possiamo trovare la misura del lato obliquo




Possiamo calcolare il perimetro
280 + 120 + (170 x 2) cm = 740 cm perimetro
Possiamo calcolare l’area
(280 + 120) x 150 : 2 = 30 000 cm2 area

ESERCIZI

·    Il quadrilatero ABCD è formato dal triangolo rettangolo ABD e dal triangolo isoscele BCD. Il cateto minore e l’ipotenusa del triangolo rettangolo misurano rispettivamente 15 cm e 25 cm, mentre il lato obliquo del triangolo isoscele misura 12,5 cm. Calcola il perimetro e l’area del quadrilatero.
·    Un quadrato con il lato lungo 300 cm ed un triangolo isoscele formano un pentagono come vedi in figura. Se l’area del pentagono è 102 000 cm2, qual è il perimetro del pentagono?
·    Un triangolo rettangolo  con i cateti lunghi 140 cm e 48 cm ha lo stesso perimetro di un rettangolo con la base di 56 cm. Calcola l’area e la diagonale del rettangolo (approssima ai decimi).
·    Un trapezio isoscele ha la base maggiore di 525 cm e la base minore di 147 cm, mentre il lato obliquo misura 315 cm.  Calcola la base di un romboide equivalente al trapezio e con l’altezza di 294 cm.

Radici quadrate approssimate



Esaminiamo l’estrazione della radice quadrata eseguita nel precedente post e riferita ad un numero intero che non sia un quadrato perfetto.

Abbiamo in questo caso una radice quadrata approssimata per difetto a meno di una unità.
Possiamo proseguire il calcolo della radice quadrata non fermandoci alla parte intera e raggiungendo quindi un’approssimazione più precisa.
Possiamo approssimare per difetto a meno di 0,1 (cioè a meno di un decimo), a meno di 0,01 (cioè a meno di un centesimo), a meno di 0,001 (cioè a meno di un millesimo) …..
Proviamo ad approssimare per difetto a meno di 0,1.
E’ sufficiente aggiungere due zeri all’ultimo resto e mettere la virgola nella radice e quindi si procede come già sappiamo.

Continuando e aggiungendo due zeri all’ultimo resto otterremo un’approssimazione per difetto a meno di 0,01.

Continuando e aggiungendo due zeri all’ultimo resto otterremo un’approssimazione per difetto a meno di 0,001.

In questo caso possiamo dire che:

ESERCIZI

·      Calcola la radice quadrata approssimata per difetto a meno di 0,1 dei seguenti numeri
2 937 – 10 721 – 89 759



·      Calcola la radice quadrata approssimata per difetto a meno di 0,01 dei seguenti numeri
747 – 5 721 – 55 381



·      Calcola la radice quadrata approssimata per difetto a meno di 0,001 dei seguenti numeri
135 – 451

La radice quadrata

L’estrazione di radice è il procedimento che ci permette di trovare la base, conoscendo l’esponente ed il valore di una potenza. Si tratta quindi dell’operazione inversa rispetto all'elevamento a potenza.
Come l’elevamento a potenza può essere alla seconda, alla terza, alla quarta ……, così l’estrazione di radice può essere quadrata, cubica, ecc.
Per ora consideriamo l’estrazione di radice quadrata (per convenzione si omette l’indice 2 sopra il segno di radice)
Dovrebbe essere evidente che
Vediamo il nome dei termini di questa operazione

Possiamo dunque dire che l’estrazione della radice quadrata di un numero (radicando) consiste in un’operazione che permette di individuare un altro numero che, elevato al quadrato, dà come risultato il radicando.
I quadrati perfetti

Osserviamo alcuni casi:



I numeri per cui esiste la radice quadrata perfetta si dicono quadrati perfetti e la loro radice quadrata è esatta.

Come possiamo fare per riconoscere se un numero è un quadrato perfetto? Scomponiamo in fattori primi alcuni dei numeri che abbiamo visto o che sappiamo essere quadrati perfetti.



49
7
7
7
1








81
3
27
3
9
3
3
3
1


64
2
32
2
16
2
8
2
4
2
2
2
1












100
2
50
2
25
5
5
5
1


49 = 72
81 = 34
64 = 26
100 = 22 x 52

Ci accorgiamo che tutti questi numeri sono uguali al prodotto di tutti fattori con esponenti pari. Possiamo dunque affermare che un numero è un quadrato perfetto quando è uguale al prodotto di fattori primi tutti con esponenti pari.

I numeri non quadrati perfetti

E i numeri che non sono quadrati perfetti? Di essi non possiamo trovare la radice quadrata esatta, ma possiamo calcolare la radice quadrata approssimata per difetto o per eccesso.

Consideriamo, ad esempio, 

Qual è il numero più grande che, elevato al quadrato, ci dà un numero inferiore a 55? E’ 7 perché 72 = 49 < 55
Qual è il numero più piccolo che, elevato al quadrato, ci dà un numero superiore a 55? E’ 8 perché 82 = 64 > 55
Quindi 7 è la radice quadrata di 55 approssimata per difetto a meno di una unità, invece 8 è la radice quadrata di 55 approssimata per eccesso a meno di una unità.

Estrazione di una radice quadrata
Passiamo ora ad illustrare il procedimento per l’estrazione di una radice quadrata.
Estraiamo la radice quadrata di 33 856.


Estraiamo ora la radice quadrata di 651 432

In questo caso, poiché l’ultimo resto è diverso da zero, non abbiamo una radice quadrata esatta, bensì una radice quadrata approssimata per difetto a meno di una unità.

ESERCIZI

·      Verifica, con la scomposizione in fattori primi, se i seguenti numeri sono quadrati perfetti.
1 440 – 1 444 - 3 240 –  5 184 - 12 348 – 14 400

·      Calcola la radice quadrata esatta dei seguenti numeri:
2 601 – 11 025 – 158 404

·      Calcola la radice quadrata approssimata per difetto a meno di una unità dei seguenti numeri:
1029 – 11 235 – 516 986


Visualizza, scarica e stampa gli esercizi
Visualizza, scarica e stampa le soluzioni

I prodotti notevoli

Divisione

Consideriamo il caso della divisione di un polinomio per un monomio.
Vediamo un esempio:
(-6x3y + 9x2y2 – 3xy2) : (-3xy)
Possiamo applicare la proprietà distributiva:

- 6x3y : (-3xy) + 9x2y2 : (-3xy) - 3xy2 : (-3xy) =

= + 2x2 – 3xy + y

Possiamo quindi dire che, se vogliamo dividere un polinomio per un monomio, possiamo dividere ciascun termine del polinomio per il monomio e poi addizionare i quozienti ottenuti.

Vediamo ancora un esempio.
Potenza di polinomi

Se dobbiamo calcolare la potenza di questo polinomio, possiamo operare così
(-2xy + 3x – 2y)2 =
= (-2xy + 3x – 2y) (-2xy + 3x – 2y) =
= + 4x2y2 – 6x2y + 4xy2 – 6x2y + 9x2 - 6xy + 4xy2 – 6xy +4y2 =
= + 4x2y2 - 12 x2y + 8xy2 + 9x2 – 12xy +4y2

Prodotti notevoli

Vi sono alcune moltiplicazioni e potenze particolari, i cui risultati sono chiamati prodotti notevoli, che possiamo eseguire più facilmente applicando alcune regole, che ora andremo a scoprire.

Prodotto della somma per la differenza di due monomi

Sia dato (x + y) (x – y)
Eseguiamo
(x + y) (x – y) = x2 – xy + xy - y2 = x2 - y2

Vediamo un altro caso. Sia dato (3a + 2b) (3a – 2b)
Eseguiamo
(3a + 2b) (3a – 2b) = 9a2 – 6ab + 6ab – 4b2 = 9a2  – 4b2
In entrambi i casi vediamo  che il prodotto è uguale alla differenza dei quadrati dei monomi

Quadrato della somma di due monomi

Vediamo un esempio.
(ab + 2a)2
Eseguiamo
(ab + 2a) (ab + 2a) = a2b2 + 2a2b + 2a2b + 4a2 = a2b2 + 4a2b + 4a2


Vediamo un altro esempio











In entrambi i casi osserviamo che il quadrato della somma di due monomi è uguale al quadrato del primo monomio più il doppio prodotto del primo per il secondo più il quadrato del secondo monomio.

Cubo della somma o della differenza di due monomi

Consideriamo questo caso
(a + 2b)3
Eseguiamo
(a + 2b) (a + 2b) (a + 2b)
Ci accorgiamo che l’operazione sottolineata rientra nel caso visto in precedenza (il quadrato della somma di due monomi) quindi:
(a2 + 4ab + 4b2) (a + 2b) =
= a3 + 2a2b + 4a2b + 8ab2 + 4ab2 + 8b3 =
= a3 + 6a2b + 12ab2 +8b3
Possiamo notare che il cubo della somma di due monomi è uguale al cubo del primo monomio (a3) più il cubo del secondo monomio (b3) più il triplo prodotto del quadrato del primo monomio per il secondo (3 . a2 . 2b) più il triplo prodotto del primo monomio per il quadrato del secondo ( 3 . a . 4b2)
Vediamo un altro caso usando le proprietà dei prodotti notevoli.
Vediamo un esempio con la differenza
(a – b)3 = a3 + 3 . a2 . (- b) + 3 . a . (-b)2 + (-b)3 = a3 – 3a2b + 3ab2 – b3


















Il teorema di Pitagora



Consideriamo il triangolo rettangolo ABC, con il cateto AB lungo 4 cm, il cateto AC 3 cm e l’ipotenusa BC lunga 5 cm.
Prendiamo come unità di misura u = 1 cm
 

Abbiamo costruito un quadrato su ogni lato del triangolo rettangolo. Possiamo constatare che:
1)      L’area del quadrato costruito sul cateto maggiore misura 16 cm2, corrisponde cioè al quadrato della misura del lato. 16 cm2 = 42
2)      L’area del quadrato costruito sul cateto minore misura 9 cm2, corrisponde cioè al quadrato della misura del lato. 9 cm2 = 32
3)      L’area del quadrato costruito sull’ipotenusa misura 25 cm2, corrisponde cioè al quadrato della misura del lato. 25 cm2 = 52
Ci accorgiamo che l’area del quadrato costruito sull’ipotenusa corrisponde alla somma delle aree dei quadrati costruiti sui cateti.
25 cm2 = 16 cm2 + 9 cm2

Questa caratteristica è valida per tutti i triangoli rettangoli?
Nel VI secolo a. C. il matematico e filosofo greco Pitagora enunciò il suo teorema (si tratta di una proposizione dimostrabile logicamente partendo da un’ipotesi per giungere alla tesi) generalizzando questa proprietà a tutti i triangoli rettangoli. Il teorema di Pitagora ci dice infatti che in ogni triangolo rettangolo l’area del quadrato costruito sull’ipotenusa è uguale alla somma delle aree dei quadrati costruiti sui due cateti.

Qual è l’utilità di questo teorema? E’ quella di poter conoscere la misura di ogni lato di un triangolo rettangolo, essendo note le misure degli altri due lati.
Dal teorema di Pitagora possiamo ricavare la seguente formula, indicando con C il cateto maggiore, con c il cateto minore e con i l’ipotenusa:
C2 + c2 = i2
Da questa formula possiamo derivare le altre due
i2 – c2 = C2
i2 – C2 = c2

E’ evidente che utilizzando queste tre formule possiamo ricavare la misura di ciascun lato di qualunque triangolo rettangolo, conoscendo al misura degli altri due.
Immaginiamo di avere questo triangolo 



Poiché nelle formule indicate sopra si ricava la misura dei lati elevati al quadrato, sarà sufficiente eseguire l’operazione opposta all’elevamento a potenza, cioè l’estrazione di radice quadrata.
Le tre formule quindi diventano:

Se vogliamo trovare l’ipotenusa, conoscendo i due cateti, dobbiamo sommare il quadrato delle misure dei due cateti ed estrarre la radice quadrata della somma ottenuta. Nel triangolo considerato sopra avremo quindi


--------------------------------------------------------------------------------------------------

Se vogliamo trovare la misura di uno dei due cateti, conoscendo la misura dell’ipotenusa e dell’altro cateto, dobbiamo calcolare la differenza tra il quadrato della misura dell’ipotenusa ed il quadrato del cateto noto ed estrarre la radice quadrata della differenza ottenuta. Nel triangolo considerato sopra avremo quindi



ESERCIZI

·        Abbiamo un triangolo rettangolo di cui sappiamo che uno dei cateti è i 3/4 dell’altro e che la loro somma è 77 cm. Qual è il perimetro e l’area del triangolo?
·        Sommando la lunghezza dell’ipotenusa e di un cateto di un triangolo rettangolo otteniamo la misura di 392 m; sapendo che la loro differenza è di 338 m, calcola il perimetro e l’area del triangolo.
·        Di un triangolo rettangolo conosciamo che l’ipotenusa misura 26 cm mentre la lunghezza di un cateto è di 15,6 cm. L’altezza relativa all’ipotenusa divide la stessa in due segmenti, di cui vogliamo conoscere le misure. 

·        Un triangolo rettangolo ha un cateto di 14 cm e l’area di 73,5 cm2. L’altezza relativa all’ipotenusa divide il triangolo di partenza in due triangoli. Calcola l’area di ciascuno dei due triangoli. 

 

Commenti (da Net Parade e da Facebook)

bravi!!!!

Molto utile! Grazie
ottimo insegnante ottimo lavoro complimenti

Un sito chiaro che spiega la matematica come si farebbe ai bambini (la semplicità è sempre efficace per fare apprendere concetti che sembrano astratti anche agli adulti). Il m.c.m. spiegato in quel modo è di una semplicità sconcertante e di immediata comprensione. BRAVI!!!

Non sono una docente di matematica, insegno sostegno nella s.sec.di 1° e questo sito è "oro" per chi fa il nostro lavoro. Grazie!:)

Una presentazione chiara ed efficace che può aiutare alunni e docenti. Bravi!
Luisa

Sono un alunno delle medie e vengo spesso a visitare questo sito per ripassare ed esercitarmi.
Luigi

Blog ad uso non solo degli studenti con spegazioni chiare ed efficaci ma anche per i docenti con tanti utilissimi spunti. L'ho condiviso sulla mia pagina e su Google+.
Sonia

Ottimo sito aiuta molto gli studenti.
Luigi

Siete un valido aiuto per i genitori che aiutano i figli e, purtroppo devono sostituire la spiegazione inesistente di qualche insegnante di matematica svogliato. Grazie.

Utile e chiaro. Complimenti!

Ottimo e utilissimo sito.

E' stato il primo sito chiaro e immediatamente utile.
DOPO ANNI DI SCUOLA FINALMENTE HO CAPITO IL SENSO DI:M.C.M. e m.c.m. !! Vi ho conosciuto oggi e siete diventati i miei migliori amici... Grazie per il Vostro impegno e competenza. Essere chiari e semplici non è da tutti, ciao da Luca